赵秋红

一、基本信息

姓名:

赵秋红

性别:

邮箱:

qzhao@tcu.edu.cn

职称:

教授

学历:

博士研究生

学位:

工学博士

二、主要研究方向

1、高层建筑高性能钢结构、组合结构抗震体系

2、整体式桥梁、跨海桥梁抗震

3、地聚物再生混凝土、固废资源化利用

、主持或参与科研项目

1. 主持(Principal Investigator)科研项目:

[1] 中央高校基本科研业务费资助项目(自然科学类):整体式桥台后填土的循环力学行为,2022.01-2023.12,负责人。

[2] 国家自然科学基金面上项目:整体式斜交桥梁的抗震性能与设计方法研究(51878447),2019.01-2022.12,负责人。

[3] 国家自然科学基金面上项目:高性能组合桥墩跨海大桥抗震性能分析及设计方法研究(51678406),2017.01-2020.12,负责人。

[4] 国家自然科学基金面上项目:加疏肋钢板剪力墙和波纹钢板剪力墙的抗震性能和设计方法研究(51378340),2014.01-2017.12,负责人。

[5] 天津市应用基础及前沿技术研究重点项目:整体式桥梁的抗震安全与设计(14JCZDJC40100-2014),2014.04-2017.03,负责人。

[6] 教育部高等学校博士学科点专硕科研基金:波浪形钢板剪力墙的抗震性能和设计方法(20130032120055),2014.01-2016.12,负责人。

[7] 横向科研项目,2022.12 – 2023.08

2. 参与(Participant)科研项目:

[1] 国家重点研发计划“绿色建筑及建筑工业化”重点专项:大跨空间结构多维隔震减振体系与抗灾性能设计方法(2016YFC0701100),2016.06-2020.05,参与人。

[2] 国家自然科学基金项目:纵向,水下地震模拟振动台台阵研制,2015.01-2020.12,参与人。

[3] 国家重点基础研究发展计划(973计划):近海重大交通工程结构地震破坏机理与失效模式(2011CB013603),2011.11-2016.08,参与人。

、获奖情况

1. 学术奖励

[1] “深水桥梁抗震关键技术提升及推广应用”,2019年度天津市科学技术进步奖,2020.1.22,二等奖,第一完成人

[2] 恢先地震工程学优秀学术会议论文奖,2019

2. 荣誉称号

[1] 天津市工程专业学位硕士研究生优秀学位论文指导教师,2019

[2] 天津大学三八红旗手,2018

[3] 教育部新世纪优秀人才,2013

[4] 天津大学北洋青年学者,2013

[5] 天津市第七批高层次人才计划(首批青年高层次人才计划),2012

[6] 美国橡树岭大学联盟Ralf E. Powe青年教授提升奖,2008

[7] 美国土木工程学会(ASCE)ExCEEd Fellowship,2006

五、主要学术成果

1. 部分代表性论文(第一/通讯作者)

[1] Zhao Q*, Qiu J, Li Y, et al. Lateral behavior and PFI model of sinusoidal corrugated steel plate shear walls[J]. Journal of Constructional Steel Research, 2023, 203: 107812. WOS:000944634000001.

[2] Zhao Q*, Ma C, Huang B, et al. Development of alkali activated cementitious material from sewage sludge ash: Two-part and one-part geopolymer[J]. Journal of Cleaner Production, 2023, 384: 135547. WOS:000904726900001.

[3] Zhao Q*, Wang Y, Xie M, et al. Experimental study on mechanical behavior of steel fiber reinforced geopolymeric recycled aggregate concrete[J]. Construction and Building Materials, 2022, 356: 129267.WOS:000898547400003.

[4] Zhao, Q*, Qiu J, Zhao Y, et al. Performance-based seismic design of corrugated steel plate shear walls[J]. KSCE Journal of Civil Engineering, 2022, 26(8): 3486-3503.WOS:000808434700001.

[5] Qiu J,Zhao Q*, Wang Z, et al. Lateral behavior of trapezoidally corrugated wall plates in steel plate shear walls, Part 1: Elastic buckling[J]. Thin-Walled Structures, 2022, 174: 109104.WOS:000792879400004.

[6] Qiu J,Zhao Q*, Yu C, et al. Lateral behavior of trapezoidally corrugated wall plates in steel plate shear walls, Part 2: Shear strength and post-peak behavior[J]. Thin-Walled Structures, 2022, 174: 109103.WOS:000792879400002.

[7] Dong S,Zhao Q*, Zhu H. Mechanical properties and constitutive model of steel fiber-reinforced rubberized concrete[J]. Construction and Building Materials, 2022, 327: 126720.WOS:000764354000001.

[8] Tan Z,Zhao, Q*, Zhao Y, et al. Probabilistic seismic assessment of COSPSW structures using fragility functions[J]. Metals, 2022, 12(6): 1045. WOS:000816406200001.

[9] Zhao, Q*, Dong S, Wang Q. Seismic response of skewed integral abutment bridges under near-fault ground motions, including soil–structure interaction[J]. Applied Sciences, 2021, 11(7): 3217. WOS: 000638334500001.

[10] Zhao, Q*, Li Y, Tian Y, et al. Cyclic behavior of corrugated double-skin composite walls with different aspect ratios[J]. Journal of Structural Engineering, ASCE, 2020, 146(10): 04020214.WOS:000561743900009.

[11] Zhao, Q*, Li Y, Tian Y. Cyclic behavior of double-skin composite walls with flat and corrugated faceplates[J]. Engineering Structures, 2020, 220: 111013.WOS:000552328200005.

[12] Zhao, Q*, Qiu J, Zhao Y, et al. Estimating fundamental period of corrugated steel plate shear walls[J]. KSCE Journal of Civil Engineering, 2020, 24: 3023-3033. WOS: 000559415100003.

[13] Qiu J,Zhao Q*, Yu C, et al. Experimental studies on cyclic behavior of corrugated steel plate shear walls[J]. Journal of Structural Engineering, ASCE, 2018, 144(11): 04018200.WOS:000444533300001.

[14] Zhao Q*, Sun J, Li Y, et al. Cyclic analyses of corrugated steel plate shear walls[J]. The Structural Design of Tall and Special Buildings, 2017, 26(16): e1351.WOS: 000412750800005.

[15] Lian J, Zhang Y, Liu F,Zhao Q*. Analysis of the ground vibration induced by high dam flood discharge using the cross wavelet transform method[J]. Journal of Renewable and Sustainable Energy, 2015, 7(4): 043146.WOS:000360655500065

[16] Hastings J S,Zhao Q*, Burdette E G. Closure to “Steel Girder Stability during Bridge Erection: AASHTO LRFD Check on L/b Ratios” by John S. Hastings, Qiuhong Zhao, and Edwin G. Burdette[J]. Journal of Bridge Engineering, 2012, 17(1): 184-185.WOS:000300437300024.

[17] Hastings J S,Zhao Q*, Burdette E G. Steel girder stability during bridge erection: AASHTO LRFD check on L/b ratios[J]. Journal of Bridge Engineering, 2010, 15(6): 759-762. WOS:000283193700015.

[18] Farahani R V,Zhao Q*, Burdette E G. Seismic analysis of integral abutment bridge in Tennessee, including soil–structure interaction[J]. Transportation Research Record, 2010, 2201(1): 70-79. WOS:000285810700009.

[19] Zhao Q*, Coffelt S J, Zou T, et al. Convenient method for on-site check of single steel I-Girder stability during erection[J]. Transportation research record, 2010, 2172(1): 59-65. WOS:000286175400007.

[20] Yu B,Zhao Q* Burdette E G. Simplified erection guidelines for double I-Girder Systems during bridge construction[J]. Transportation research record, 2010, 2172(1): 74-83. WOS:000286175400009.

[21] Zhao Q*, Yu B, Burdette E G. Effects of Cross-Frame on stability of double I-girder system under erection[J]. Transportation research record, 2010, 2152(1): 57-62. WOS:000287284100007.

[22] Zhao Q*, Yu B, Burdette E G, et al. Monitoring steel girder stability for safer bridge erection[J]. Journal of performance of constructed facilities, ASCE, 2009, 23(6): 391-398. WOS:000271829000003.

[23] Zhao Q*, Astaneh-Asl A. Seismic behavior of steel shear wall systems and application of smart structures technology[J]. International Journal of Steel Structures, 2007, 7(1): 61-67. WOS:000255214900008.

[24] Zhao Q*, Astaneh-Asl A. Seismic behavior of steel shear wall systems and application of smart structures technology[J]. International Journal of Steel Structures, 2007, 7(1): 69-75. WOS:000255214900009.

[25] Zhao Q, Astaneh-Asl A*. Cyclic behavior of traditional and innovative composite shear walls[J]. Journal of Structural Engineering, 2004, 130(2): 271-284. WOS: 000188535100014.

[26] 赵秋红*,翁琴龙,黄福云,等.整体式斜交桥台-桩-土体系往复加载拟静力试验[J].中国公路学报, 2022, 35(11): 73. EI Accession Number:

[27] 赵秋红*,孙泽旺,谭志伦. SMA碟簧群的循环受压性能及简化模型[J].工程力学, 2022, 40: 1-14. EI Accession Number:

[28] 赵秋红*, 董硕, 谢萌. 钢纤维增强地聚物再生混凝土单轴受压全曲线试验[J]. 建筑结构学报, 2022, 43(11): 255-265. EI Accession Number:20224212981912.

[29] 赵秋红*, 董硕, 朱涵, 等.钢纤维橡胶混凝土的循环受压应力-应变关系[J].建筑材料学报,2022,25(08):789-797. EI Accession Number: 20224012846116.

[30] 赵秋红*, 王晴薇, 董硕,等. 整体式斜交连续梁桥抗震性能[J]. 交通运输工程学报, 2022, 22(06): 232-244. EI Accession Number: 20230713580453.

[31] 赵秋红*, 郭浩猛, 董硕,等. 整体式斜交桥中桥台钢桩地震响应[J]. 交通运输工程学报, 2022, 22(05): 119-130. EI Accession Number: 20230313409451.

[32] 谭志伦, 赵秋红*. 自复位两边连接梯形波纹钢板剪力墙滞回性能分析[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(12): 1262-1274. EI Accession Number: 20225113257753.

[33] 赵秋红*, 董硕, 张建周, 等. 圆端形不锈钢管混凝土桥墩抗震性能试验研究[J]. 湖南大学学报(自然科学版), 2022, 49(09): 80-89. EI Accession Number: 20224112881709.

[34] 赵秋红*, 高俊秀, 邱静. 基于实际竖向荷载分布的波纹钢板剪力墙轴压屈曲分析[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(04): 391-401. EI Accession number: 20220111428863.

[35] 赵秋红*, 许梦凡, 董硕. 地震-波浪耦合作用下考虑相位差影响的深水桥墩动力响应分析[J]. 中国公路学报, 2021, 34(05): 86-98. EI Accession number: 2021251051905.

[36] 赵秋红*, 刘凯, 王菲, 等. GFRP筋橡胶集料混凝土梁受弯性能[J]. 复合材料学报, 2021, 38(05): 1611-1622. EI Accession number: 20212010355807.

[37] 赵秋红*, 董硕, 朱涵. 钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型[J]. 复合材料学报, 2021, 38(07): 2359-2369. EI Accession number: 20213210743649.

[38] 赵秋红*, 董硕, 朱涵. 钢纤维-橡胶/混凝土抗剪性能试验[J].复合材料学报, 2020, 37(12): 3201-3213. EI Accession number: 20205209676166.

[39] 赵秋红*,李晨曦,董硕.深水桥墩地震响应研究现状与展望[J].交通运输工程学报, 2019, 19(02): 1-13. EI Accession number: 20192607093187.

[40] 赵秋红*, 邱静, 郝博超, 等.两边连接竖向波纹钢板剪力墙的抗侧性能[J].天津大学学报(自然科学与工程技术版), 2019, 52(S2): 46-53. EI Accession number: 20193907464301.

[41] 赵秋红*, 王菲, 朱涵.结构用橡胶集料混凝土受压全曲线试验及其本构模型[J].复合材料学报, 2018, 35(08): 2222-2234. EI Accession number: 20184105916272.

[42] 赵秋红*, 齐朝阳, 安泽宇, 等.考虑SSI的整体式钢桥抗震性能参数分析[J]. 交通运输工程学报, 2018, 18(05): 35-46. EI Accession number: 20185206305388.

[43] 赵秋红*,邱静,李楠, 等.梯形波纹钢板剪力墙抗震性能试验研究[J].建筑结构学报,2018,39(s2):112-120. EI Accession number: 20191306687212.

[44] 赵秋红*,邱静,李楠.波纹钢板剪力墙简化模型分析[J].中国科技论文在线精品论文,2018,11(8): 791-798.

[45] 赵秋红*,张冀豪,陈宝春.整体式斜交桥抗震性能分析[J].地震工程与工程振动,2018,38(04):34-40.

[46] 赵秋红*, 王凯杰, 李一康, 等. 改进钢板-混凝土组合剪力墙结构受力性能分析[J].建筑结构学报, 2017, 38(s1): 98-104. EI Accession number: 20182005205945.

[47] 赵秋红*, 张建周, 李忠献.圆端形不锈钢管混凝土桥墩滞回性能有限元分析[J].建筑结构学报, 2017, 38(s1): 435-443. EI Accession number: 20182005205861.

[48] 赵秋红*, 郝博超, 李楠.钢板剪力墙简化分析模型研究[J].天津大学学报(自然科学与工程技术版), 2017, 50(S1): 42-52. EI Accession Number: 20180204634694.

[49] 赵硕,赵秋红*.部分填充圆端形钢管混凝土桥墩滞回性能分析[J].建筑结构,2018,48(S2):575-580.

[50] 邱静,赵秋红*.加劲钢板剪力墙的研究及应用[J].建筑结构,2015,16:52-62.

[51] 孙军浩,赵秋红*.钢板剪力墙的工程应用[J].建筑结构,2015,16:63-70.

2. 部分专利

[1] 赵秋红,李晨曦.哑铃型钢管混凝土组合桥墩及与承台的连接结构和方法, 发明专利, ZL201710503938.9, 2022.10.4, 已授权.

[2] 赵秋红,李晨曦.屈曲抑制圆端型钢管混凝土桥墩及与承台连接结构和方法, 发明专利, ZL201710499667.4, 2022.10.4,已授权.

[3] 赵秋红,邱静,李楠.一种应用钢板网的混凝土框架抗震加固结, 发明专利, ZL201610867269.9, 2019.5.7, 已授权.

[4] 赵秋红,邱静,李楠.一种侧边开缝交叉加劲压型钢板剪力墙, 发明专利, ZL201610867268.4, 2019.5.7,已授权.

 地址:天津市津静路26#天津城建大8040www威尼斯 - 官方入口 - welcome
电话:022-23085076(院办)/  23085077(学生办公室)